Local compositional inversion of $f(x)=x /\left(1+b x+c x^{\wedge} 2\right)$

Tom Copeland. Los Angeles, 3/23/22
The local compositional inversion of the curve $f(x)=\frac{x}{1+b x+c x^{2}}$ is portrayed by reflection through the quadrant bisector $y=x$ to blue and green segments of the blue and green curves with
$f(x)=\frac{x}{1+b x+c x^{2}}$ red curve,
$g(x)=\frac{1-b x-\sqrt{(1-b x)^{2}-4 c x^{2}}}{2 c x}$ blue curve,
$h(x)=\frac{1-b x+\sqrt{(1-b x)^{2}-4 c x^{2}}}{2 c x}$ green curve,
and
$y=x$ black bisecting line.
Series expansions about $x=0$:

$$
\begin{aligned}
& f(x)=\frac{x}{1+a x+c x^{2}} \\
& =x+(-b) x^{2}+\left(b^{2}-c\right) x^{3}+\left(2 b c-b^{3}\right) x^{4}+\left(b^{4}-3 b^{2} c+c^{2}\right) x^{5} \\
& +\left(-b^{5}+4 b^{3} c-3 b c^{2}\right) x^{6}+\left(b^{6}-5 b^{4} c+6 b^{2} c^{2}-c^{3}\right) x^{7} \\
& +\left(-b^{7}+6 b^{5} c-10 b^{3} c^{2}+4 b c^{3}\right) x^{8}+\left(b^{8}-7 b^{6} c+15 b^{4} c^{2}-10 b^{2} c^{3}+c^{4}\right) x^{9}+\cdots
\end{aligned}
$$

See OEIS A049310 as primary entry for this series, but also see A011973, A092865, A098925, A102426, and A169803.

Series in x of

$$
g(x)=\frac{1-b x-\sqrt{(1-b x)^{2}-4 c x^{2}}}{2 c x}
$$

$=x+(b) x^{2}+\left(b^{2}+c\right) x^{3}+\left(b^{3}+3 b c\right) x^{4}+\left(b^{4}+6 b^{2} c+2 c^{2}\right) x^{5}$
$+\left(b^{5}+10 b^{3} c+10 b c^{2}\right) x^{6}+\left(b^{6}+15 b^{4} c+30 b^{2} c^{2}+5 c^{3}\right) x^{7}$
$+\left(b^{7}+21 b^{5} c+70 b^{3} c^{2}+35 b c^{3}\right) x^{8}+\left(b^{8}+28 b^{6} c+140 b^{4} c^{2}+140 b^{2} c^{3}+14 c^{4}\right) x^{9}+\cdots$
See A097610 for these coefficients.
Lorentz series in x of
$h(x)=\frac{1-b x+\sqrt{(1-b x)^{2}-4 c x^{2}}}{2 c x}$
$=\frac{1}{c x}-\frac{b}{c}-(1) x-(b) x^{2}-\left(b^{2}+c\right) x^{3}-\left(b^{3}+3 b c\right) x^{4}-\left(b^{4}+6 b^{2} c+2 c^{2}\right) x^{5}$
$-\left(b^{5}+10 b^{3} c+10 b c^{2}\right) x^{6}-\left(b^{6}+15 b^{4} c+30 b^{2} c^{2}+5 c^{3}\right) x^{7}+\cdots$
$=\frac{1-b x}{c x}-g(x)$.
(Compare this with "Appendix: Laurent series formulation" of the pdf "Ruling the inverse universe, the inviscid Hopf-Burgers evolution equation".)

Graphs via Desmos online graphing app:

Above for $b=c=1$.

Above for $b=-2.5$ and $c=1$.

Above for $b=-2.5$ and $c=4$.

Above for $b=2$ and $c=1$.

Above for $\mathrm{b}=1$ and $\mathrm{c}=-1$.

Above for $\mathrm{b}=-1$ and $\mathrm{c}=-1$.

See also my post "A Taste of Moonshine in Free Moments" for a discussion of a particular case.

