Tag Archives: umbral compositional inverse

More on Formal Group Laws, Binomial Sheffer Sequences, and Linearization Coefficients

A formula for computing the structure, or linearization, constants for reducing products of pairs of polynomials of a binomial Sheffer sequence, , is presented in terms of the umbral compositional inverses of the polynomials, . To say the pair are … Continue reading

Posted in Math | Tagged , , , , , , , ,

Compositional Inverse Operators and Sheffer Sequences

When considering operator inverses, one usually considers multiplicative inverses. As noted earlier in several entries, particularly, “Bernoulli and Blissard meet Stirling … ” (BBS), we see compositional inverse pairs of operators playing an important role in making associations among important … Continue reading

Posted in Math | Tagged , , , , , , , , | Leave a comment

Fractional calculus and interpolation of generalized binomial coefficients

Draft Interpolation of the generalized binomial coefficients underlie the representation of a particular class of fractional differintegro operators by convolution integrals and Cauchy-like complex contour integrals.

Posted in Math | Tagged , , , , , , , , , , | Leave a comment

The Riemann and Hurwitz zeta functions and the Mellin transform interpolation of the Bernoulli polynomials

This entry (expanding on the Bernoulli Appells entry) illustrates interpolation with the Mellin transform of the Bernoulli polynomials and their umbral inverses, the reciprocal polynomials, giving essentially the Hurwitz zeta function and the finite difference of , both of which … Continue reading

Video | Posted on by | Tagged , , , , , , , , | Leave a comment

The Hirzebruch criterion for the Todd class

The Hirzebruch criterion for the Todd class is given in “The signature theorem: reminiscences and recreations” by Hirzebruch. The formal power series that defines the Todd class must satisfy . The e.g.f. for the Bernoulli numbers uniquely satisfies this criterion. … Continue reading

Posted in Math | Tagged , , , , , , , | 1 Comment

The Bernoulli polynomials and Hirzebruch’s generalized Todd class

Let’s connect the Bernoullis, using their basic operational definition rather than their e.g.f., to the Todd genus and more through formal group laws (FGL, see note at bottom) and associated Lie ops and, therefore, compositional inversion. [This is done through … Continue reading

Posted in Math | Tagged , , , , , , , | 2 Comments

Bernoulli Appells

The defining characteristic of the Bernoulli numbers operationally is that they are the basis of the unique Appell sequence, the Bernoulli polynomials, that “translate” simply under the generalized binomial transform (Appell property) and satisfy (for an analytic function, such as … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , , , | 4 Comments