Tag Archives: Umbral calculus

Compositional Inverse Operators and Sheffer Sequences

When considering operator inverses, one usually considers multiplicative inverses. As noted earlier in several entries, particularly, “Bernoulli and Blissard meet Stirling … ” (BBS), we see compositional inverse pairs of operators playing an important role in making associations among important … Continue reading

Posted in Math | Tagged , , , , , , , , | Leave a comment

Dirac-Appell Sequences

The Pincherle derivative  is implicitly used in Eqn. 2.19 page 13 of “Mastering the master field” by Gopakumar and Gross. The raising and creation operators in the paper are analogous to those for a Laplace-dual Appell sequence, or Dirac-Appell sequence, … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , | 1 Comment

Fractional Calculus, Gamma Classes, the Riemann Zeta Function, and an Appell Pair of Sequences

The background info and comments for the MSE question Lie group heuristics for a raising operator for and the MO question Riemann zeta function at positive integers and an Appell sequence of poylnomials introduce an Appell sequence of polynomials containing … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , , , , , , , , | Leave a comment

A Class of Differential Operators and the Stirling Numbers

The differential operator with can easily be expanded in terms of the operators by considering its action on

Posted in Math | Tagged , , , , , , , , , , , , , , , | Leave a comment

Bernoulli, Blissard, and Lie meet Stirling and the simplices: State number operators and normal ordering

A set of identities that encapsulates relations among the Bernoulli numbers, the Stirling numbers of the first and second kinds, and operators related to the umbral calculus of Blissard and his contemporaries: Decoding:

Posted in Math | Tagged , , , , , , , , , , , , , , ,

Lagrange à la Lah

 Lagrange à la Lah Part I and Lagrange à la Lah Part II are a set of notes on partition polynomials derived from binomial Sheffer sequences via umbral refinement, their relation to compositional inversion via the Laplace transform, and their characterization by umbral … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Mathemagical Forests

The set of notes Mathemagical Forests is an expansion of the May notes and discusses some connections between rooted trees, derivative operators, Lagrange inversion, the Legendre transformation, the Faa di Bruno formula, Sheffer sequences and umbral calculus, and the infinite dimensional Witt … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , | Leave a comment