### Recent Comments

### Categories

### Meta

# Tag Archives: Riemann zeta function

## A Diorama of the Digamma

(Under construction) This series is divergent, so we may be able to do something with it. — Heaviside The divergent series for the pole of the Riemann zeta function is Lets’s use Mellin transform interpolation (essentially the master’s (Ramanujan) master … Continue reading

Posted in Math
Tagged Digamma function, Fractional calculus, gamma function, generalized harmonic numbers, harmonic numbers, infinigen, infinitesimal generator, Inverse Mellin transform, logarithmic derivative, Mellin integral transform, Mellin interpolation, Newton interpolation, power sum polynomials, reciprocal integers, Riemann zeta function, Rising factorial, Taylor series
Leave a comment

## The Riemann Zeta and the Calculus

(Under construction: Reprising investigations over several years.) By virtue of the relation between the values of the Riemann zeta function at the negative integers, , and the Bernoulli numbers and between the Bernoulli polynomials and the partial sums of the … Continue reading

Posted in Math
Tagged annihilation operator, Bernoulli numbers, Bernoulli polynomials, Beta integral, complex Cauchy contour integral, Confluent hypergeometric functions, convolution integral, creation operators, Differential operators, Digamma function, Dirac delta function, Fractional calculus, gamma function, Generalized Laguerre functions, generalized Laguerre polynomials, harmonic numbers, infinigen, infinitesimal generator, lowering operator, Mellin convolution, Mellin transform, operational calculus, Raising operators, Riemann zeta function, Sheffer Appell polynomials
Leave a comment

## Fractional Calculus, Gamma Classes, the Riemann Zeta Function, and an Appell Pair of Sequences

The background info and comments for the MSE question Lie group heuristics for a raising operator for and the MO question Riemann zeta function at positive integers and an Appell sequence of poylnomials introduce an Appell sequence of polynomials containing … Continue reading

Posted in Math
Tagged Appell sequences, Associated Laguerre polynomials, Bell polynomials, Confluent hypergeometric functions, Convolution operators, Creation and annihilation operators, Cycle index polynomials, Differential operators, Digamma function, Falling factorials, Fractional calculus, Gamma classes, Gamma genus, Infinitesimal generators, Inverse Mellin transform, Mellin transform, Psi function, Raising and lowering operators, Riemann zeta function, Rising factorials, Umbral calculus, Umbral compositional inverse pair
Leave a comment

## The Riemann and Hurwitz zeta functions and the Mellin transform interpolation of the Bernoulli polynomials

This entry (expanding on the Bernoulli Appells entry) illustrates interpolation with the Mellin transform of the Bernoulli polynomials and their umbral inverses, the reciprocal polynomials, giving essentially the Hurwitz zeta function and the finite difference of , both of which … Continue reading

## Bernoulli Appells

The defining characteristic of the Bernoulli numbers operationally is that they are the basis of the unique Appell sequence, the Bernoulli polynomials, that “translate” simply under the generalized binomial transform (Appell property) and satisfy (for an analytic function, such as … Continue reading

Posted in Math
Tagged Appell sequences, Cycle index polynomials, Differential operators, Faulhaber's formula, formal group laws, Hurwitz zeta function, Lagrange inversion, Lah polynomials, Mellin transform, Pincherle derivative, Raising operators, Riemann zeta function, Sheffer sequences, Simplices, Stirling numbers, Symmetric polynomials, umbral compositional inverse
4 Comments

## Bernoulli, Blissard, and Lie meet Stirling and the simplices: State number operators and normal ordering

A set of identities that encapsulates relations among the Bernoulli numbers, the Stirling numbers of the first and second kinds, and operators related to the umbral calculus of Blissard and his contemporaries: Decoding:

Posted in Math
Tagged Appell sequences, Bernoulli polynomials, Compositional inverse, Conjugation and derivation, Differential operators, Finite difference operator, formal group laws, Hurwitz zeta function, Lie derivatives, Lowering operators, Multiplicative inverse, Raising operators, Riemann zeta function, Sheffer sequences, Stirling numbers, Umbral calculus