Advertisements

# Tag Archives: Faa di Bruno formula

## Lagrange à la Lah

Lagrange à la Lah Part I and Lagrange à la Lah Part II are a set of notes on partition polynomials derived from binomial Sheffer sequences via umbral refinement, their relation to compositional inversion via the Laplace transform, and their characterization by umbral … Continue reading

Posted in Math
Tagged Bell polynomials, Cayley trees, Composition, Compositional inverse, Differential operators, Faa di Bruno formula, Falling factorial, Forests, Generalized shift operator, Generlized Taylor series, Lagrange inversion, Lagrange partition polynomials, Lah polynomials, Operator calculus, Partition polynomials, Rising factorial, Sheffer sequences, Special functions, Special polynomials, Stirling numbers, Stirling polynomials, Tree graphs, Trees, Umbral calculus, Umbral operator trees
1 Comment

## Mathemagical Forests

The set of notes Mathemagical Forests is an expansion of the May notes and discusses some connections between rooted trees, derivative operators, Lagrange inversion, the Legendre transformation, the Faa di Bruno formula, Sheffer sequences and umbral calculus, and the infinite dimensional Witt … Continue reading