Tag Archives: Dirac delta function

The Riemann Zeta and the Calculus

(Under construction: Reprising investigations over several years.) By virtue of the relation between the values of the Riemann zeta function at the negative integers, , and the Bernoulli numbers and between the Bernoulli polynomials and the partial sums of the … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Jumpin’ Riemann !_ !__ !___ ! !_____ ! Mangoldt–da mon–got it !___!_!

The magic of Mangoldt summoning Riemann’s miraculous miniscules-the nontrivial zeros. In response to observations initiated by Matt McIrvin of a sum of exponentials of the imaginary part of the non-trivial zeroes of the Riemann zeta function, assuming the Riemann hypothesis … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , | Leave a comment

Dirac-Appell Sequences

The Pincherle derivative ┬áis implicitly used in Eqn. 2.19 page 13 of “Mastering the master field” by Gopakumar and Gross. The raising and creation operators in the paper are analogous to those for a Laplace-dual Appell sequence, or Dirac-Appell sequence, … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , | 1 Comment

Depressed Equations and Generalized Catalan Numbers

Discriminating Deltas, Depressed Equations, and Generalized Catalan Numbers┬áis a set of notes on the the relation of generating functions of the generalized Catalan numbers, e.g., OEIS-A001764, to the compositional inverse of and the tangent envelope of associated discriminant curves. Added … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , | 2 Comments

Riemann’s Jump Function J(x) for the Primes

Dirac’s Delta Function and Riemann’s Jump Function J(x) for the Primes presents Riemann’s jump function for counting the primes as introduced in H. M. Edward’s Riemann’s Zeta Function (Dover, 2001), couched in terms of the Dirac delta function and the … Continue reading

Posted in Math | Tagged , , , , | 3 Comments