### Recent Comments

### Categories

### Meta

# Tag Archives: Dirac delta function

## Dirac-Appell Sequences

The Pincherle derivative is implicitly used in Eqn. 2.19 page 13 of “Mastering the master field” by Gopakumar and Gross. The raising and creation operators in the paper are analogous to those for a Laplace-dual Appell sequence, or Dirac-Appell sequence, … Continue reading

Posted in Math
Tagged Appell polynomial sequences, Appell sequences, Conjugation of operators, Creation and annihilation operators, Differential operators, Dirac delta function, Dirac-Appell sequence, Generalized Appell sequence, Inverse Laplace transform, Ladder operators, Modified Hermite polynomials, Operator calculus, Pincherle derivative, Raising and lowering operators, Umbral calculus
1 Comment

## Depressed Equations and Generalized Catalan Numbers

Discriminating Deltas, Depressed Equations, and Generalized Catalan Numbers is a set of notes on the the relation of generating functions of the generalized Catalan numbers, e.g., OEIS-A001764, to the compositional inverse of and the tangent envelope of associated discriminant curves. Added … Continue reading

Posted in Math
Tagged Catalan numbers, Compositional inversion, Determinants, Dirac delta function, Discriminant curves and tangent envelope, Discriminants, Functional equations for Fuss-Catalan numbers, Fuss-Catalan numbers, Generalized Catalan numbers, Graphical solutions of depressed equations, Lagrange inversion, Laplace transform, Legendre transform, Power series
Leave a comment

## Riemann’s Jump Function J(x) for the Primes

Dirac’s Delta Function and Riemann’s Jump Function J(x) for the Primes presents Riemann’s jump function for counting the primes as introduced in H. M. Edward’s Riemann’s Zeta Function (Dover, 2001), couched in terms of the Dirac delta function and the inverse Mellin transform.