# Tag Archives: Differential operators

## Pre-Lie algebras, Cayley’s analytic trees, and mathemagical forests

Referring to week 299 of John Baez’s old blog or the Pre-Lie Algebra entry of nLab, a left pre-Lie algebra satisfies the associative relation, (AR), . To see the relation to Cayley’s work of 1857 as described in my pdf … Continue reading

## Formal group laws and binomial Sheffer sequences

Given a compositional inverse pair and , i.e., , with with , , and , construct the binomial Sheffer sequence with the exponential generating function . Then the associated formal group law (FGL) may be expressed as

## Dirac-Appell Sequences

The Pincherle derivative is implicitly used in Eqn. 2.19 page 13 of “Mastering the master field” by Gopakumar and Gross. The raising and creation operators in the paper are analogous to those for a Laplace-dual Appell sequence, or Dirac-Appell sequence, … Continue reading

## The Elliptic Lie Triad: KdV and Riccati Equations, Infinigens, and Elliptic Genera

The Elliptic Lie Triad: Riccati and KdV Equations, Infinigens, and Elliptic Genera (This site was not correctly updating, so the notes were transcribed to this pdf.) Addendum to The Elliptic Lie Triad