Tag Archives: Cycle index polynomials

The Creation / Raising Operators for Appell Sequences

The Creation / Raising Operators for Appell Sequences is a pdf presenting reps of the raising operator  and its exponentiation  for normal and logarithmic Appell sequences of polynomials as differential and integral operators. The Riemann zeta and digamma, or Psi, function are connected to fractional … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , , , , , , , , , , , | 1 Comment

Fractional Calculus, Gamma Classes, the Riemann Zeta Function, and an Appell Pair of Sequences

The background info and comments for the MSE question Lie group heuristics for a raising operator for and the MO question Riemann zeta function at positive integers and an Appell sequence of poylnomials introduce an Appell sequence of polynomials containing … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , , , , , , , , | Leave a comment

Bernoulli Appells

The defining characteristic of the Bernoulli numbers operationally is that they are the basis of the unique Appell sequence, the Bernoulli polynomials, that “translate” simply under the generalized binomial transform (Appell property) and satisfy (for an analytic function, such as … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , , , | 2 Comments