Tag Archives: Binomial Sheffer sequences

An lnfinite Wronskian Matrix, Binomial Sheffer Polynomials, and the Lagrange Reversion Theorem

Form the infinite Wronskian matrix with elements . A generating function for this matrix is with . If , then also , where is a binomial Sheffer sequence of polynomials. Then in this particular case, and so is the product … Continue reading

Posted in Math | Tagged , , , , , , , , | Leave a comment

Generators, Inversion, and Matrix, Binomial, and Integral Transforms

Generators, Inversion, and Matrix, Binomial, and Integral Transforms is a belated set of notes (pdf) on a derivation of a generating function for the row polynomials of  OEIS-A111999 from its relation to the compositional inversion (a Lagrange inversion formula, LIF) presented … Continue reading

Posted in Math, Uncategorized | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , | 2 Comments

Goin’ with the Flow: Logarithm of the Derivative

Goin’ with the Flow: Logarithm of the Derivative Operator is a pdf set of notes under construction on the relations between the commutator of the logarithm of the derivative operator, the Pincherle derivative,  Lie operator derivatives, and the two umbrally inverse … Continue reading

Posted in Math | Tagged , , , , , , , , , , , , , , , , , , , , , | 1 Comment