Lagrange à la Lah

 Lagrange à la Lah Part I and Lagrange à la Lah Part II are a set of notes on partition polynomials derived from binomial Sheffer sequences via umbral refinement, their relation to compositional inversion via the Laplace transform, and their characterization by umbral operator trees–the

  1. Bell / Bruno / Touchard partition polynomials
  2. Lah / Laguerre partition polynomials  (order -1)
  3. Stirling / cycle index polynomials (#s of the first kind / symmetric group)
  4. Lagrange partition polynomials
Advertisements
This entry was posted in Math and tagged , , , , , , , , , , , , , , , , , , , , , , , , . Bookmark the permalink.

One Response to Lagrange à la Lah

  1. Pingback: Pre-Lie algebras, Cayley’s analytic trees, and mathemagical forests | Shadows of Simplicity

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s